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Abstract 

A review of  the standard cosmological models shows that the positive cosmological 
constant gives rise to exponential increase in spatial extension. Such an increase is con- 
tradictory if extended over infinite future time, since even in an infinite universe there 
can only be a denumerable infinity of finite spatial units, The argument against ex- 
ponential expansion is among the processes forbidden by the steady-state postulate of 
MacMillan. 

1. Introduction 

The empirical determination of  what is the correct cosmological model has 
not advanced significantly in recent years (Burbidge, 1971); it seems appro- 
priate, therefore, to employ any consistency or other extra-empirical argu- 
ments which might contribute, however indirectly, to a decision among 
models. One such consideration arises in connection with the cosmological 
constant A, first introduced (Einstein, 1917) as a positive quantity which is 
in effect a small universal anti-gravity factor . In  the relativistic cosmological 
models with A > 0 the scale factor R(t )  increases exponentially with time; 
and, as we shall show, we therefore come to contradiction if existence through 
all time is assumed for the universe of  the model. 

Our argument is an extension of  one that I have previously put forth 
(Schlegel, 1962a, b; 1965; 1967) against the Bondi-Gold-Hoyle steady- 
state theory. The postulated creation-of-matter process o f  that theory, if 
carried through a denumerably infinite past time, leads to a non-denumer- 
able infinity o f  atoms. The implied existence o f  such a set, with cardinal 
number ~, constitutes a contradiction in the theory; for ~ is also the 
cardinal number o f  the set of  mathematical points in any spatial continuum, 
finite or infinite (Fraenkel, 1966), and there cannot be a one-one corre- 
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spondence between the set of  all atoms, each of  which has a finite extension, 
and the non-denumerable set of  mathematical points. That is, the number of  
atoms in the universe must be at most countably infinite (Schlegel, 1962a; 
North, 1965). Likewise, the number of  finite spatial elements cannot be 
non-denumerably infinite, and this limitation, we shall see, leads to the 
argument against the cosmological constant. 

2. The Standard Models 

By the standard relativistic models I mean those for which the time- 
varying spatial scale factor, R(t ) ,  is described by the Friedmann equation, 

k 2 = C/R + AR2]3 - k (2.1) 

where C --- (8/3)~rpR 3 is a constant, with p = time-varying mean energy density 
(gravitational constant G and speed of light c are taken as unity). We gain 
eighteen different models from equation (2.1), each with its own behavior 
for R(t ) ,  depending on the values that we give to p, A, and k: p may be 0 
or >0 ;  A may be <,  =, or >0 ;  and the space-curvature index k may be +1, 
- 1 ,  or 0. Rindler (1969) explicitly discusses most of  the possibilities for 
R(t) ,  considering the eighteen models, and I have used his results and 
notation in making up the following complete list (Table 1, p. 219). Further 
mathematical detail on many of the models is given by McVittie (1965). 

3. R ( t )  Increase 

It can be seen from the table that in no case with A ~< 0 do we have an 
exponential increase of  R(t). On the other hand, there is exponential R 
increase for every set of p, k values with A > 0; the only exception is the 
(b) model under k = +1, p > O, which oscillates if there are the specified 
conditions. The positive cosmological constant has the effect, evidently, of  
causing space to be created. We see the increase explicitly, of  course, in the 
line elements of the A > 0 models; e.g., the Robertson-Walker form of the 
line element for the de Sitter universe (A > 0, k = 0, P = 0) is, R2(t) = e2et: 

ds 2 =dt  2 - e2at[dr 2 + r2(dO 2 + sin20 • dq~2)] (3.1) 

In the B-G-H steady-state theory there is also an exponential increase in 
extension of space, since the line element is of the de Sitter form, hut with 
the c~ of equation (3.1) explicitly replaced by Hubble's constant (there is 
no A in the theory and hence a would be 0). In discussions of the steady- 
state cosmology attention has usually been focused on the creation of 
matter, rather than of space, but there is an obvious equivalence, since the 
large-scale average matter density p must by the B-G-H principles be con- 
stant at all times. Comparing the B-G-H and standard relativistic models we 
can, indeed, specifically say that the matter creation tensor of the former and 
cosmological constant of the latter have precisely similar roles. This similarity 
is apparent in the basic field equations of  the two theories (Bondi, 1952), 



COSMOLOGICAL MODELS AND NON-DENUMERABLE SINGULARITIES 219 

n~v - ½Rguv + Aguv = -8nTuu  (3.2) 

and 

R~u - 1Rguu + C.v = -87rTuv (3.3) 

wherein we see that the creation tensor Cur of  the steady-state theory, 
equation (3.3), directly replaces the Aguv term in the general relativity 
theory, equation (3.2). The inconsistency which arises in the B-G-H theory 

TABLE 1. R(t) in the standard models. The first entry for each set of A, k values 
gives R(t) for a universe with p > 0; the right-hand entry, enclosed in square brackets, 
isfor p =0 

A < 0, k = - 1  : Oscillating; Rma x is given by 
3C/R 3 + 3/R 2 = - A 

k = 0: Oscillating; 
R 3 = (3C/-2A)(1 - cos 3/~t) 

k = +1 : Oscillating; Rma x is given by 
3C/R 3 - 3/R 2 = - A  

A = 0 ,  k = - l :  R ~ t ( t > > O )  
k = 0: R =~/(9C/4)-  t2/3 

(Einstein-de Sitter) 
k = +1 : Oscillating; R = (1/26")(1 - cos ~), 

t = (1/2C) (~ - sin ~), ~ an angular 
parameter (Friedmann) 

A > O, k = - 1  : R ~ R o  e~t (R large) $ 
k = 0: R ~ R o  e~t (R large) 
k = +1: (a) R ~--Ro e~t (R large) 

(Lemaitre) 
(b) Oscillating if 0 < A < AE § 

and R initially between 
R = 0 and R at/~ = 0 (given 
b y 3 [ R -  C]/R 3 = A )  

[Oscillating; 
R =/3 -1 sin ~t] t 

[Oscillating; 
R = Ro ei~t] 

[Non-physical; 
R =//3 -1 cos t] 

[R = t] 
[R = constant] 

[Non-physical; 
R = it] 

[R = a -1 sinh at] 
[R = Ro e~t (de Sitter)] 
[ e  = ~-1 cosh at] 

t ~ = ~/(-A/3). 
:~ a = x/(A/3). 
§ A E is the value of A for the Einstein static model. 

with matter-creation through an achieved infinity of  time is, therefore, also 
present in the standard models with positive A, in consequence of  expansion 
of  space through an infinite time. 

4. The Non-Denumerable Infinity 

We recall that a denumerable set has the cardinal number 1%; the natural 
integers form such a set, and hence any set whose elements can be placed in 
one-one correspondence with the natural numbers is countable (denumer- 
able), with cardinal number 1%. However, the mathematical points in a 
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spatial continuum constitute a set with cardinal number greater than Ro. 
This larger number, which we write as R, denotes a non-denumerable infinity: 
the elements of  a set with multiplicity ~ cannot be counted with the unend- 
ing (but lesser) infinity of  the integers. Just as 2 n, for n finite, is the cardinal 
number of all the subsets that can be formed from n integers, so likewise 
is the cardinal number of  the set of  subsets that can be formed from the set, 
cardinal number ~to, of all of the positive integers. That is (Fraenkel, 1961), 

=2 ~ (4.1) 

We may perhaps most simply regard equation (4.1) as defining R as a 
non-terminating product of  doublings (Abian, 1965), 

~=2Ro  = 2 - 2 . 2 . 2 - 2 . 2 - 2 - 2 " . . .  

The scale factor R( t )  determines the distance, as a function of  time, 
between two 'points', e.g., galaxies, which are at rest in the spatial coordinate 
system. We have seen that for cosmological models with A > 0, 

R(t )  = Ro eat, (t >> 0) (4.2) 

except for that k = +1, p > 0 model which is trapped by a particular set of  
initial conditions. We may regard R as the radius of some chosen volume. 

By a change of  base we can rewrite equation (4.2) as: 

R = Ro 2(a/l°ge2)t 

Since we are not concerned with the numerical magnitude of ~ =x/(A/3), 
except that A > 0, we may absorb the loge2 factor into ce, thereby giving us: 

R = Ro  2at 

Suppose now that R o is expressed in some appropriate length units, as meters. 
Then, for time t extended forever, t = n o, we have, using equation (4.1), 

R = Ro2~o = ~ (4.3) 

The number of  length units has become non-denumerably infinite. 
However, we are now faced with a contradiction, since we cannot have a 

non.denumerable number of  finite length units in even the infinite line, For 
length units may be enumerated successively along a line, and the cardinal 
number of the set of  integers used in counting is of  course 1%. Or, to argue 
more formally, we assume that the set of  unit lengths on a line does have the 
cardinal number 1~. It  must then be possible, by the property of  having the 
same cardinal number, to set up a one-one correspondence between the 
unit lengths and the real numbers, which do form a set of  cardinality ~. 
However, if  this were possible we would be able to count the real numbers, 
because we are able to count the unit lengths of a line; but we would then 
contradict the established inequality, ~t > 1%. 

The time t of our equations is the usual cosmic time. Although defined by 
space-like surfaces normal to the world-lines of  galaxies, it is in effect the 
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same (McVittie, 1961) as the ephemeris time of astronomy and is similarly 
related to the natural processes of experience. We cannot therefore expect 
to transform away the non-denumerabflity of  equation (4.3), as, e.g., by 
transforming to a t' = log t. Also, we cannot escape the contradiction by 
appealing to horizons existing for any one observer; the contradictory non- 
denumerable spatial extension applies to the entire domain of the model. 

5. Consequences and Discussion 

The inconsistency between a positive cosmological constant and an 
infinite future existence for the universe is an argument against any utiliza- 
tion of  the constant. The special case of  the oscillatory A > 0 model in 
which R remains finite is also discredited; for, i r a  > 0 signifies a natural 
process which involves a contradiction, we should not expect to find the 
process operating under a set of  adventitious conditions. Further, i f  we find 
the positive constant to be invalid we may argue that we likewise lose the 
basis for any extension to a A < 0 constant. 

It might be held that the future need not extend through t = ~o. However, 
there is no evidence for processes which are leading to an eventual termina- 
tion of the universe. Perhaps a better line of argument would be that the 
future is to be characterized by t ~ ~o rather than by the actual infinity I%. 
The ,oo, symbol is not a transfinite number, but a prescription that n is as 
large a finite number as desired; and, for any finite n, 2nis denumerable. 
None the less, if the universe exists for all future time it must have the 
property of  existing for 1% years, since I1o is the cardinal number of  all tile 
integers. In denying that property, we would be saying there are some n 
values which are not included; the future, then, is terminated at some n 
value, indefinitely large as it might be. 

Similarly, if the universe has existed forever, the number of past time 
units must be 1%. And, since 1% + 1 = Ro, with the assignment of  an 
achieved infinite past we cannot say that the universe advances in time in 
any absolute sense, but only with respect to chosen events. So, if we wish 
to avoid a time of creation or termination (in the absence of evidence that 
points to their occurrence as natural processes) it seems that we must ascribe 
the full denumerable t% infinity to the past and future time spans of the 
universe. Some writers have argued that an event cannot be infinitely distant 
in the future (or the past) because by counting one can never reach a point 
that is other than a finite number of  years, or other units, from the present. 
Bertrand Russell (1938) has pointed out that such a limitation applies to 
any infinite class, and also, however, that the existence of  such a class is in 
no way therefore proscribed; it is only that the infinite class must be defined 
by a class concept rather than by enumeration. 

6. Generalization: MacMillan' s Principle 

Our result, that exponential spatial expansion through all time leads to a 
contradiction, is similar to the one found for the B-G-H theory, wherein 
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creation of matter through infinite past time leads to a physical impossibility. 
These consequences of  ' too much' space, or matter, have a similarity to the 
traditional Olbers' paradox problem in which emission of radiation (or of  
gravitational potential (Einstein, 1917)) over an infinite past gives rise, if 
not to contradiction, at least to conditions that are counter to what is 
physically observed. The processes of  creation or emission lead to difficulty 
because they continue without reversal of  direction throughout the extent 
of time. In an essential way they violate a postulate put forth by MacMillan 
(1918, 1925) in the early form of the steady-state theory which he devel- 
oped (Scblegel, 1958). He proposed as a first principle of  cosmology that 
'The universe does not always change in any one direction', and we may 
dignify this statement as MacMiUan's Principle. 

Even for the A = 0 models we have a uni-directional change of R with 
time for k = - 1 ,  R(t )  cc t, and for k = 0, R(t)  ~ t2/3. So, in these models, the 
present p > 0 state of  the universe is a highly privileged one (Tolman, 1934), 
of infinitesimally brief duration in contrast with the time span for which 
p = 0 (again, assuming that the time extent of  the universe is indeed infinite). 
That is, if  the universe has existed always in the past, the two k ~: +1 models 
predict states which are incompatible with what is now observed in the 
universe. MacMillan's Principle would, of  course, rule out these non- 
oscillatory models. 

There is, I judge, no justification in a broader theory for the Principle. 
It can be seen as a generalization of the fact that all models which change 
'always in the same direction' come to difficulty, either the outright con- 
tradiction of non-denumerability or the improbability of  our present 
observed state. Beyond its support in the instances which it generalizes, 
MacMillan's Principle may gain strength from our knowledge of processes 
throughout nature; in general we find systems of  all kinds, from biological 
organisms to galaxies, to have natural limits of uni-directional development. 

To summarize: I f  it is accepted that the universe exists through an actual 
infinity of  time, the non-denumerability arguments give a firm basis for 
ruling out the A > 0 models as well as the B-G-H steady-state model. The 
projection of A to a negative value seems also then to be discredited, although 
we cannot say that a contradiction arises with A < 0. Likewise, for the re- 
maining three realistic (non.zero density) models, A = 0, p > 0, MacMillan's 
Principle gives a plausible but yet only conjectural ground for ruling out two 
of them, k = - 1  and k = 0. Our rather general line of  argument gives support, 
then, only for the Friedmann (k = +1) oscillatory model. 
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